セルロースエーテルは、天然セルロースを化学修飾して作られた合成ポリマーです。セルロースエーテルは天然セルロースの誘導体です。セルロースエーテルの製造は合成ポリマーとは異なります。最も基本的な素材は天然高分子化合物であるセルロースです。天然セルロースの構造の特殊性により、セルロース自体はエーテル化剤と反応する能力を持ちません。しかし、膨潤剤処理後は分子鎖と分子鎖間の強い水素結合が破壊され、水酸基が積極的に放出されて反応性アルカリセルロースとなります。セルロースエーテルを入手します。
セルロースエーテルの特性は、置換基の種類、数、分布によって異なります。セルロースエーテルの分類は、置換基の種類、エーテル化度、溶解度、および関連する用途特性にも基づいています。分子鎖上の置換基の種類により、モノエーテルと混合エーテルに分けられます。通常、モノエーテルとして mc を、混合エーテルとして HPmc を使用します。メチルセルロースエーテルmcは、天然セルロースのグルコース単位の水酸基をメトキシ基に置換したものです。ユニット上の水酸基の一部をメトキシ基、残りの一部をヒドロキシプロピル基に置換したものです。構造式は [C6H7O2(OH)3-mn(OCH3)m[OCH2CH(OH)CH3]n]x ヒドロキシエチル メチル セルロース エーテル HEmc であり、これらは市場で広く使用され販売されている主な品種です。
溶解度の観点から、イオン性と非イオン性に分類できます。水溶性非イオン性セルロースエーテルは、主に 2 つの系列のアルキルエーテルとヒドロキシアルキルエーテルで構成されます。イオン性 Cmc は主に合成洗剤、繊維の印刷と染色、食品と石油の探査で使用されます。非イオン性mc、HPmc、HEmc等は主に建材、ラテックス塗料、医薬品、日用薬品等に使用されており、増粘剤、保水剤、安定剤、分散剤、皮膜形成剤として使用されています。
セルロースエーテルの保水性
建築材料、特に乾式混合モルタルの製造において、セルロースエーテルはかけがえのない役割を果たしており、特に特殊モルタル(改質モルタル)の製造においては、不可欠かつ重要な成分である。
モルタルにおける水溶性セルロースエーテルの重要な役割は主に 3 つの側面があります。1 つは優れた保水能力、もう 1 つはモルタルの粘稠度およびチキソトロピーへの影響、そして 3 つ目はセメントとの相互作用です。
セルロースエーテルの保水効果は、下地層の吸水率、モルタルの組成、モルタル層の厚さ、モルタルの水分要求量、硬化材の硬化時間に依存します。セルロースエーテル自体の保水性は、セルロースエーテル自体の溶解性と脱水により生じます。ご存知のとおり、セルロースの分子鎖には水和性の高いOH基が多数含まれていますが、セルロースの構造は結晶性が高いため水に溶けません。ヒドロキシル基の水和能力だけでは、分子間の強い水素結合とファンデルワールス力をカバーするには不十分です。したがって、水に溶けることはなく膨潤するだけです。分子鎖に置換基が導入されると、置換基が水素鎖を破壊するだけでなく、隣接する鎖間に置換基が入り込むことで鎖間の水素結合も破壊されます。置換基が大きくなるほど、分子間の距離は長くなります。距離が長ければ長いほど。水素結合を破壊する効果が大きいほど、セルロース格子が膨張して溶液が浸入した後、セルロースエーテルは水溶性となり、高粘度の溶液となります。温度が上昇するとポリマーの水和力が弱まり、鎖の間の水分が追い出されます。脱水効果が十分になると分子は凝集を始め、三次元網目構造のゲルを形成して折り畳まれます。モルタルの保水性に影響を与える要因としては、セルロースエーテルの粘度、添加量、粒子の細かさ、使用温度などが挙げられます。
セルロースエーテルの粘度が高いほど保水性能が良くなり、ポリマー溶液の粘度が高くなる。ポリマーの分子量(重合度)に応じて、分子構造の鎖長や鎖の形状によって決まり、置換基の種類や量の分布も粘度範囲に直接影響します。 [η]=Kmα
[η] ポリマー溶液の極限粘度
mポリマー分子量
αポリマー特性定数
K 溶液粘度係数
ポリマー溶液の粘度はポリマーの分子量に依存します。セルロースエーテル溶液の粘度と濃度はさまざまな分野での応用に関係します。したがって、各セルロースエーテルには多くの異なる粘度仕様があり、粘度の調整は主にアルカリセルロースの分解、つまりセルロースの分子鎖の切断によって実現されます。
モルタルへのセルロースエーテルの添加量が多いほど保水性能が向上し、粘度が高いほど保水性能が向上します。
粒子径は粒子が細かいほど保水性が高くなります(図3参照)。セルロースエーテルの大きな粒子が水と接触すると、表面はすぐに溶解してゲルを形成し、材料を包み込み、水分子の浸透が続くのを防ぎます。長時間撹拌しても均一に分散・溶解できず、白濁した綿状溶液や凝集物が形成される場合があります。セルロースエーテルの保水性に大きく影響し、溶解性もセルロースエーテルを選択する要素の一つとなります。
セルロースエーテルの増粘性とチキソトロピー性
セルロースエーテルの 2 番目の機能である増粘は、セルロースエーテルの重合度、溶液濃度、せん断速度、温度、その他の条件によって決まります。溶液のゲル化特性は、アルキルセルロースおよびその変性誘導体に特有のものです。ゲル化特性は、置換度、溶液濃度、添加剤に関連します。ヒドロキシアルキル修飾誘導体の場合、ゲルの特性はヒドロキシアルキルの修飾度にも関係します。低粘度のmc、HPmcの場合は10%~15%、中粘度のmc、HPmcの場合は5%~10%、高粘度のmc、HPmcの場合は2%~3%の濃度の溶液が調製できます。 HPmc、通常セルロースエーテルの粘度分類も 1% ~ 2% 溶液で等級分けされます。高分子量のセルロースエーテルは増粘効率が高い。同じ濃度の溶液中で、分子量が異なるポリマーは粘度も異なります。高い学位。目標の粘度は、低分子量セルロースエーテルを大量に添加することによってのみ達成できます。粘度のせん断速度依存性が少なく、高粘度で目標粘度に到達し、必要な添加量も少なく、粘度は増粘効率に依存します。したがって、一定の粘稠度を実現するには、一定のセルロースエーテル量(溶液濃度)と溶液粘度を確保する必要があります。溶液のゲル化温度も溶液の濃度の増加に伴って直線的に低下し、一定の濃度に達すると室温でゲル化します。 HPmc のゲル化濃度は室温でより高くなります。
粒子サイズを選択し、さまざまな修飾度のセルロース エーテルを選択することによって、粘稠度を調整することもできます。いわゆる修飾とは、mcの骨格構造にヒドロキシアルキル基のある程度の置換を導入することです。 2 つの置換基の相対置換値、つまりよく言われるメトキシ基とヒドロキシアルキル基の DS と ms の相対置換値を変えることによって。セルロースエーテルのさまざまな性能要件は、2 つの置換基の相対的な置換値を変更することで実現できます。
粉末建築材料に使用されるセルロースエーテルは、冷水に素早く溶解し、システムに適切な粘稠度を提供する必要があります。一定のせん断速度を与えると、依然として綿状のコロイド状ブロックとなり、標準以下または低品質の製品となります。
また、セメントペーストの稠度とセルロースエーテルの投与量の間には良好な直線関係があります。セルロースエーテルはモルタルの粘度を大幅に増加させる可能性があります。投与量が多いほど、効果はより明らかになります。図 6 を参照してください。
高粘度のセルロースエーテル水溶液は高いチクソ性を有しており、これもセルロースエーテルの大きな特徴です。 Mc 型ポリマーの水溶液は通常、ゲル温度以下では擬似塑性で非チキソトロピックな流動性を持ちますが、低いせん断速度ではニュートン流動特性を持ちます。擬可塑性は、置換基の種類や置換度に関係なく、セルロースエーテルの分子量や濃度とともに増加します。したがって、同じ粘度グレードのセルロースエーテルは、mc、HPmc、HEmc に関係なく、濃度と温度が一定に保たれている限り、常に同じレオロジー特性を示します。温度が上昇すると構造ゲルが形成され、高度なチキソトロピー性の流れが発生します。高濃度で低粘度のセルロース エーテルは、ゲル温度より低い温度でもチキソトロピーを示します。この特性は、建築モルタルの施工におけるレベリングやたわみの調整に非常に役立ちます。ここで説明する必要があるのは、セルロースエーテルの粘度が高いほど保水性は良くなりますが、粘度が高いほどセルロースエーテルの相対分子量が高くなり、それに対応して溶解度が低下するため、マイナスの影響が生じます。モルタル濃度と施工性能について。粘度が高くなるほど、モルタルの増粘効果はより顕著になりますが、それは完全に比例するわけではありません。粘度は中程度および低めですが、変性セルロースエーテルは湿式モルタルの構造強度を向上させる優れた性能を持っています。粘度が増加するとセルロースエーテルの保水性が向上します。
投稿日時: 2022 年 11 月 22 日